首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9307篇
  免费   505篇
  国内免费   174篇
化学   7022篇
晶体学   51篇
力学   508篇
数学   1026篇
物理学   1379篇
  2023年   58篇
  2022年   152篇
  2021年   364篇
  2020年   445篇
  2019年   461篇
  2018年   508篇
  2017年   449篇
  2016年   659篇
  2015年   452篇
  2014年   615篇
  2013年   1134篇
  2012年   832篇
  2011年   730篇
  2010年   501篇
  2009年   457篇
  2008年   473篇
  2007年   386篇
  2006年   256篇
  2005年   224篇
  2004年   172篇
  2003年   144篇
  2002年   100篇
  2001年   37篇
  2000年   25篇
  1999年   30篇
  1998年   23篇
  1997年   21篇
  1996年   27篇
  1995年   17篇
  1994年   15篇
  1993年   14篇
  1992年   19篇
  1991年   13篇
  1990年   11篇
  1989年   11篇
  1988年   7篇
  1987年   15篇
  1986年   6篇
  1985年   17篇
  1984年   16篇
  1983年   6篇
  1982年   16篇
  1981年   8篇
  1980年   12篇
  1979年   7篇
  1978年   8篇
  1977年   7篇
  1976年   5篇
  1975年   5篇
  1971年   3篇
排序方式: 共有9986条查询结果,搜索用时 15 毫秒
81.
The present research confirms the capacity of aqueous extract of Boswellia serrata grown under in vitro condition for the green synthesis of gold nanoparticles (AuNPs). Also, we showed the cytotoxicity, antioxidant, and anti-acute myeloid leukemia properties of AuNPs compared to mitoxantrone in a leukemic mouse model. The synthesized AuNPs were characterized using several techniques including XRD, TEM, FE-SEM, UV–Vis, and FT-IR. From the XRD pattern, four distinct diffraction peaks at 38.2°, 44.2°, 64.7° and 77.4° are indexed as (111), (200), (220) and (311) planes of FCC metallic gold. TEM and FE-SEM images revealed an average diameters of 15–30 nm for the nanoparticles. FT-IR findings offered antioxidant compounds in the nanoparticles were the sources of reducing power, reducing gold ions to AuNPs. UV–Vis revealed an absorption band at 536 nm that is related to the surface plasmon resonance of AuNPs. In vivo design, induction of acute myeloid leukemia was done by DMBA in 75 mice. Then, the mice were randomly divided into six subgroups, including untreated, control, HAuCl4, B. serrata, AuNPs, and mitoxantrone. AuNPs (In the dose of 1 mg/kg body weight) similar to mitoxantrone, significantly (p ≤ 0.05) increased the platelet, lymphocyte, and RBC parameters and the anti-inflammatory cytokines (IL4, IL5, IL10, IL13, and IFNα) and reduced the weights and volumes of liver and spleen and their sub-compartment, the total WBC, blast, monocyte, neutrophil, eosinophil, and basophil counts, and the pro-inflammatory cytokines (IL1, IL6, IL12, IL18, IFNY, and TNFα) as compared to the untreated mice. By quantitative Real-Time PCR, S1PR1 and S1PR5 mRNA expression in lymphocytes were significantly (p ≤ 0.05) increased by treating the leukemic mice with the AuNPs and mitoxantrone. In vitro design, AuNPs similar to mitoxantrone had low cell viability dose-dependently against Human HL-60/vcr, 32D-FLT3-ITD, and Murine C1498 cell lines without any cytotoxicity on HUVEC cell line. Besides, the DPPH assay showed similar antioxidant potentials for AuNPs and mitoxantrone. In conclusion, the results of this research indicated the excellent capacity of synthesized gold nanoparticles using B. serrata leaf aqueous extract in the treatment of acute myeloid leukemia in leukemic mice.  相似文献   
82.
Cu(II) Schiff base complex supported on Fe3O4@SiO2 nanoparticles was employed as a magnetic nanocatalyst (nanocomposite) with a phase transfer functionality for the one-pot preparation of α-aminonitriles (Strecker reaction). The desired α-aminonitriles were obtained from the reaction of aromatic or aliphatic aldehydes, aniline or benzyl amine, NaCN, and 1.6 mol% of the catalyst in water at room temperature and good to excellent yields were obtained for all substrates. The catalyst was characterized analytically and instrumentally including Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric, nuclear magnetic resonance, energy-dispersive X-ray spectroscopy, inductively coupled plasma spectroscopy, vibrating-sample magnetometry analysis, dynamic light scattering, Brunauer–Emmett–Teller surface area, field emission scanning electron microscopy, and transmission electron microscopy analyses. The reaction mechanism was investigated, in which the performance of the catalyst as a phase transition factor seems to be probable. The catalyst showed high activity, high turnover frequency (TOF)s, significant selectivity, and fast performance toward the Strecker synthesis. The nanocatalyst can be readily and quickly separated from the reaction mixture with an external magnet and can be reused for at least seven successive reaction cycles without significant reduction in efficiency.  相似文献   
83.
One-pot synthesis of substituted chromeno[3,4-b]quinoline derivatives was developed by three-component reaction of aldehydes, dimedone or 1,3-cyclohexadione, and 4-aminocoumarin in the presence of nicotinic acid-supported cobalt ferrite [CoFe2O4@SiO2@Si(CH2)3Cl@NA] as a novel magnetic catalyst in chloroform at reflux conditions. Nicotinic acid-supported cobalt ferrite was characterized via Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometry. Moreover, the catalyst could be easily recovered by magnetic separation and recycled up to five times without significant loss of its catalytic activity. The products formed in excellent yields over appropriate reaction times under environmentally friendly conditions. High efficiency and easy isolation of the catalyst from products by simple magnetic attraction are some of the considerable advantages of this procedure.  相似文献   
84.
The aim of the study was the rapid green synthesis of titanium nanoparticles using the aqueous extract of Falcaria vulgaris leaves (TiNPs@FV) and exploring their antioxidant, cytotoxicity, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. These nanoparticles were characterized by UV-Vis, Fourier transform-infrared(FT-IR), X-ray diffraction XRD), field emission-scanning electron microscopy FE-SEM), and transmission electron microscopy TEM) analyses. The synthesized TiNPs@FV had great cell viability on human umbilical vein endothelial cells and indicted this method was nontoxic. DPPH (2,2-diphenyl-1-picrylhydrazyl) test revealed similar antioxidant potentials for F. vulgaris, TiNPs@FV, and butylated hydroxytoluene. All data of antibacterial, antifungal, and cutaneous wound healing tests were analyzed by SPSS 22 software. In the antimicrobial part of this study, TiNPs@FV indicated higher antifungal and antibacterial effects than all standard antibiotics (p ≤ 0.01). Minimal inhibitory concentration (MIC) and minimal fungicidal concentration of TiNPs@FV against all fungi were at 2–4 mg/mL and 2-8 mg/mL ranges, respectively. But, MIC and minimal bactericidal concentration of TiNPs@FV against all bacteria were at 2-8 mg/mL and 2-16 mg/mL ranges, respectively. In the part of cutaneous wound healing, use of TiNPs@FV ointment significantly (p ≤ 0.01) raised the wound contracture, vessel, hydroxyl proline, hexuronic acid, hexosamine, fibrocyte, and fibrocytes/fibroblast rate and significantly (p ≤ 0.01) decreased the wound area, total cells, neutrophil, and lymphocyte compared to other groups in rats. The results of FT-IR, UV-Vis, XRD, TEM, and FE-SEM confirm that the aqueous extract of F. vulgaris leaves can be used to yield titanium nanoparticles with a notable amount of remedial effects.  相似文献   
85.
A ligand-free, CuI-catalyzed protocol was developed for the one-step preparation of Michael adducts of aromatic thiols in high yields by reacting a mixture of an aryl halide and an electron-deficient alkene with sodium iso-propyl xanthogenate.  相似文献   
86.
In this study, quinazolinone derivatives have been synthesized via a suitable and efficient procedure by one-potmulti-component reactions of 3-amino-1,2,4-triazole or 2-aminobenzimidazole, dimedone and aromatic aldehydes in the presence of Fe3O4@TiO2-IL as nanocatalyst under solvent-free condition. The products were prepared in good to excellent yields using Fe3O4@TiO2-IL magnetic nanocatalyst. The Fe3O4@TiO2 magnetic nanoparticles (MNPs) were prepared using beet juice extract and functionalized with IL based on DABCO. Moreover, the core-shell structured magnetic Fe3O4@TiO2-IL has been characterized by different techniques such as 1H-NMR, FT-IR, VSM, XRD, SEM, TGA, TEM and EDX. To the best of our knowledge, the prepared ionic liquid displayed a good protective and activator agent for magnetic nanocatalyst.  相似文献   
87.
In this study, a novel Cu-immobilized ionic liquid (IL)was designed, characterized, and employed as both promoter and solvent in the synthesis of some dihydropyrano[2,3-c]pyrazoles. The synthesized ionic liquid was characterized by 1H NMR, 13C NMR, FTIR, ICP and EDX analysis and showed high catalytic activity to proceed the synthesis of bioactive dihydropyrano[2,3-c]pyrazole derivatives. This method has the advantage of using the IL as a green medium for the synthesize of the products in high to excellent yields within short reaction times.  相似文献   
88.
Russian Journal of Physical Chemistry A - In this study, using the B3LYP* method, quantum chemical computations were applied for analyzing the effects of solvent on the electronic spectrum features...  相似文献   
89.
In this paper, multicomponent reaction of amine, carbon disulfide and fluoronitrobenzene is reported for the synthesis of nitrophenyl methylcarbamodithioate derivatives. The method is based on the nucleophilic attack of the activated methylcarbamodithioate salt to fluoronitrobenzene. Several starting materials are tested and successfully produced the corresponding nitrophenyl methylcarbamodithioate. A possible mechanism for the reaction is suggested.  相似文献   
90.
In this study, graphene oxide was modified during consecutive functionalization steps with 1,4-diphenylamine, cyanuric chloride, and ethylenediamine. Then, star-shaped CuO nanoparticles were synthesized on modified graphene oxide using the seed-mediated growth method in which nucleation, growth stages, and reduction of graphene oxide to graphene occurred simultaneously. After ensuring successful synthesis of CuO nanoparticles and to facilitate recycling, a magnetization process was utilized by adding iron oxide nanoparticles. This nanocomposite was characterized by transmission electron microscopy, X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The prepared heterogeneous catalyst was investigated for the reduction of organic dyes in the presence of NaBH4 as a reducing reagent. The kinetic data obtained for the reduction of methyl orange (MO), methylene blue (MB), 4-nitrophenol (4-NP), and rhodamine 6G (Rh6G) were fitted to first-order rate equations, and the calculated rate constants for the reduction of MO, MB, 4-NP and Rh6G were as follows: −0.091, −0.071, −0.045, and 0.040, respectively. As star-shaped CuO nanoparticles showed a higher antibacterial effect compared to spherical-shaped CuO nanoparticles, the antibacterial activity of star-shaped CuO nanoparticles immobilized on magnetic functionalized graphene was evaluated against Gram-positive and Gram-negative bacteria through an agar well diffusion assay and demonstrated more antibacterial activity against gram-positive bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号